Structural Analysis – ANSYS 18 Innovations

ANSYS Release 18 is packed with lot of innovative features for structural analysis. This article summarizes the various advancements in the new release.

ANSYS 18 enables users like you and me to meet customer demands to develop lighter, stronger, and more efficient products. The new release has new tools and technologies to analyze complex materials, optimizing designs and shapes for new manufacturing methods and ensuring structural reliability of electrical components.

With the new parallel Topology Optimization technology, you can perform lightweighting of structures, easily extract CAD shapes and quickly verify the optimized designs. You can easily simulate spatially-dependent materials like composite parts, 3D printed components, and bones and tissues for more accurate results. The new spectral fatigue capability enables you to accurately model vias and calculate product life to better measure the reliability of electronic components. The addition of a new concrete material law, along with the ability to easily define reinforced structures, makes it easy to model complex structures in the civil engineering and nuclear application areas.

In summary, ANSYS Mechanical has brought in much awaited enhancements which were long overdue for users performing structural analysis. Therefore the new release revolutionizes problem handling and solving capabilities across various industrial domains. Here are the highlights.

Easier and Faster Usage
  • There are enhancements in sorting and filtering options, hotkeys and selection utilities leading to effective utilization of ANSYS Mechanical
  • You will find advancements in contact formulation and detection capabilities that lead to faster convergence
Image of a coupling element while performing structural analysis
Ease of Use in ANSYS 18
Advanced Material Modeling

ANSYS has introduced improvement to existing material models in order to help accurately simulate complex plasticity.

Enhancements for Dynamics

Developments in rotor-dynamics and performance improvements in CMS will lead to reduction of computational time while performing structural analysis.

Image of a turbomachinery component with results after structural analysis
Advancements in Rotordynamics
Additive Manufacturing Technologies

The introduction of advanced options for topology optimization is another significant enhancement that will help manufacturing sector with material savings.

Mechanical Reliability of Electronics

Lastly the enhanced coupling between Electronic and Mechanical helps to model Thermo-Mechanical effects in intricate and minute electronic components better.


Besides the above advancements, ANSYS 18 offers many avenues for users to realize their product promise! If you’re interested to learn more about ANSYS 18 innovations for structural analysis, then join our webinar on March 24. There’s a lot to learn!

Share this on:

Fluid Dynamics – ANSYS 18 Innovations

ANSYS Release 18 is packed with lot of innovative features for computational fluid dynamics. This article summarizes the various advancements in the new release.

As always, ANSYS has delivered continuous product advancements. The latest release features several beneficial capabilities.

With ANSYS 18, engineers can create better, more accurate computational fluid dynamics (CFD) simulations. Therefore, engineers new to CFD will benefit from greatly expanded capabilities in easy-to-use ANSYS AIM, including support for transient flows, non-Newtonian fluid viscosity and fluid momentum. In addition, ANSYS 18 includes new features and functionality that enables engineers to solve CFD problems with more accuracy than ever before. Further breakthrough harmonic analysis delivers accurate turbomachinery simulations up to 100x faster. ANSYS 18 also introduces CFD Enterprise, the first solution designed for CFD experts in organizations who need to solve the toughest problems.

Here are the release highlights.

GUI & Advances in Post-Processing

The new release has better CAD import, enriched post-processing, well-organized realization of different volumetric domains and surface boundaries. Also the sophisticated solution monitoring and elegant post processing views make up for a delightful user experience with ANSYS 18.

Fluid Dynamics: Velocity vectors and pressure contour in a pump-valve operation, now displayed with enhanced graphics in ANSYS Fluent
Velocity vectors and pressure contour in a pump-valve operation, now displayed with enhanced graphics in ANSYS Fluent
Better Physical Models
  • Heat Transfer and Combustion. Monte-Carlo radiation model helps capture high temperature radiation in solid domains with better ray tracing implementation. Further on, enhanced flamelet modeling gets combustion analysis running better with ANSYS 18.
  • Multiphase Flow Models. Chemical mixing and other fluid blending processes benefit by the convergence and significant speedup improvements for free surface transient flow simulations with the Volume-of-Fluid (VOF) method.
  • Turbomachinery Enhancements. You can solve blade flutter cases more efficiently by using harmonic analysis. In addition, flank-milled blades can now be better modeled with ANSYS BladeModeler.
Solver Enhancements

Lastly with solver enhancements, mesh adaption of polyhedral meshes in ANSYS Fluent is now possible with its improved execution. Another aspect is that of overset meshing which is ready to better support the aerodynamic community.

Fluid Dynamics: Flow impact on an offshore structure - Robust free surface flow simulation with enhanced VOF model of ANSYS Fluent
Flow impact on an offshore structure – Robust free surface flow simulation with enhanced VOF model of ANSYS Fluent

Do you want to learn more about ANSYS 18 innovations for computational fluid dynamics? Join our webinar on March 23. There’s a lot to learn!

Share this on: