Open the Door to Material Optimization

Introduction:

The world is evolving at a quantum speed with transforming technology. The human life cycle has enriched to tend towards advancement in every sector. Businesses have adopted the transformation & obtained the benefits of technology involved in their mainframe process to become multi-billion companies. Making the product a hero in every story, Engineering the product or designing a physical product demands focus on four major factors; Design, Analysis, Manufacturing, and Materials. Though the first three factors are digitally transformed, the materials field is still lagging. This article exclusively focuses on optimizing your right material choices.

Let’s start with an example of a company facing a similar conundrum.

Background:

Referring to the case of an OEM, that manufactures an industry renowned product.

Due to the stringent industry standards and to stay ahead of the competition, the company decided to optimize their existing product and its performance. Following the advancement, they relied on simulation results for quick feedback from different design iterations. Furthermore, parametric optimization yielded them even better results compared to the manual design iterations. Overall, they were able to achieve a 9% Reduction in Weight and a 5 % Increase in Efficiency through Design Optimization.

Much to the Team’s surprise, the product manager wasn’t satisfied with this result. Hence, he assembled his team to initiate an experiment with different material types. 

The broader idea of this activity was to understand how he could improve his product and cut down costs to the company, thereby naming this activity as Material optimization.

Optimized Product = Design Optimization + Material optimization

Following the superior’s directive, the team started dedicating their efforts to bring the best out of current results, in terms of cutting costs, reducing development time & raising standards of performance. Four of his team members heading the R & D were investigating the case study with different ideas as below. 

The first member tried to use the existing available material data with him to see if he can get the best possible combination;

The second member tried to use the materials preferred by his company to avoid supply chain issues;

The third member tried to reach out to suppliers/consultants for a piece of advice on material choices; and

The fourth member tried to browse on the internet for material data.

However, none of the above approaches answered the below questions

  1. Which material to choose?
  2. Is there a better material choice available?
  3. Is there a cheaper solution? 
  4. Is the chosen data, reliable?
Capture

This is where companies need a tool like, Granta Selector which does answer the above questions.

Granta Selector is a tool that can help optimize your material choices, which not only has material properties of metals, plastics, polymers, ceramics and various other classes of materials but also has features like search, plot and compare your choice of materials as shown in the pic.

Apart from the features mentioned above, Granta selector has:

  • FE export tool to export simulation ready material data to most of the FE platforms
  • synthesizer tool to estimate material and process cost 
  • Eco Audit tool to estimate the environmental impact of the selected material at the early stage of the design.

To use how to use above-mentioned tools, click here to understand how Tecumseh, a global leader of commercial refrigeration compressors used Granta Selector to reduce development time by three-fold and saved millions of euros of cost savings from making the right materials decisions.

please click here for more information on Material optimization.

Please feel free to connect with us at marketing@cadfem.in or +91-9849998435, for a quick Demo on this Product.

Author Bio:

Mr. Gokul Pulikallu, Technical Lead-South

CADFEM India

Mr. Gokul Pulikallu has done his Bachelor of Technology  & he is carrying 9 years of experience in the field of structural Mechanics simulation and optimization. His main focus is Design Optimization & Material Optimization and helps customers adopt these technologies efficiently.

Share this on:

ANSYS Structures R19 – Release Update

This post discusses latest developments and enhancements in ANSYS Structures R19 applications. Maximize your RoI and productivity with the latest ANSYS release.

Today’s ever-changing and increasingly-competitive world makes life complicated for product developers such as you. Hence, you are perpetually in a race to launch better products and increase profitability.

In order to help you realize your product promise, we are glad to introduce you to ANSYS Structures R19 with various improvements and additions. As a result of the new release, you’ll find exciting and innovative technologies which make the development of complex products effortless with help of improved solver capabilities, better usability, integration of complex physical phenomenon and solver scale-up using HPC.

Enhanced Utility and Scale-Up

This year ANSYS brings in some radical changes to help you capitalize on your current and future ANSYS investments. Starting off, the following will enhance the utility of ANSYS for many applications and help in speeding up run time.

  • The inclusion of small sliding algorithms helps significantly reduce the time involved in contact detection by performing contact search only at the beginning of the analysis. So, this leads to faster solutions.

ANSYS Structures R19 Update

ANSYS Structures R19 Update

  • Additions to the user interface such as Selection Clipboard helps you save selection information intermittently. Hence you can retrieve it whenever necessary to define BCs, Named Selection, etc.
  • Material Plots help in visualizing material assignments to the components and also to have a holistic understanding of materials in the assembly.
  • Improvements in meshing and contact algorithm is another development. Therefore, this will lead you to a faster problem definition in the interactive environment of ANSYS Mechanical.

ANSYS Structures R19 Update
Speedup with DMP Scaling

ANSYS Structures R19 Update

  • Compute with 4 cores as default across entire ANSYS Mechanical (Pro, Premium, Enterprise) product lineup. Hence more value for your investments!
  • Achieve 3X scale-up using HPC with improved Structures R19 Solvers and utilize HPC Pack across entire ANSYS product portfolio. Therefore, your problems run faster and better!
Effortless Modelling of Complex Phenomena

Increased use of simulations across various industries requires engineers to simulate complex phenomenon. ANSYS Structures R19 helps make simulation of complex physical phenomena seem effortless.

  • SMART: Separating, Morphing, Adaptive and Re-Meshing Technology (SMART) makes simulation of Fatigue Cracks easy and interactive. SMART fracture capabilities simulate crack growth without the need for crafted meshes.
  • Coupled Physics: New 22X elements help in achieving a magnetic coupling of Structural and Thermal with Magnetic DOFs.
  • Enhanced FSI coupling allow faster data transfer between CFD and Structural Solvers.

ANSYS Structures R19 Update

ANSYS Structures R19 Update

ANSYS Structures R19: Other Noteworthy Enhancements
  • Additional data import from external models
  • Element Birth and Death as Native Mechanical Feature
  • Quick and Easy RST import
  • Improved NLAD-based Simulation for physics involving Large Strains
  • Beam to Beam Contacts
  • Higher Scaling in DMP

ANSYS Structures R19 Update

ANSYS Structures R19 Update

In conclusion, this article serves as a good foundation to further understanding. There is much more to learn about ANSYS Structures R19. Join us on April 12 for the ANSYS Structures R19 Update Webinar to get the details! Register now.

Share this on:

ANSYS Fluids R19 – Release Update

This post discusses latest developments and enhancements in ANSYS Fluids R19 applications. Maximize your RoI and productivity with the latest ANSYS release.

How we use simulations has changed drastically since its inception. A couple of decades back simulations were majorly used for research purpose.  But today it is used for various applications ranging from airplanes to microfluidics. Simulations have also evolved to handle more complex problems in smaller run times. ANSYS, a leading simulation software company is constantly innovating to make simulation easier to use and at the same time making them more robust. With every release, the GUI is getting better and the solver is getting smarter. Hence, without further ado, let’s take a dive into a few enhancements in ANSYS Fluids R19.

In this article, I will discuss some of these developments however, I recommend you to join the upcoming webinar that I will deliver on April 17.

Enhancements for Spray Modelling

The new feature in ANSYS Fluids R19 would significantly reduce the computational effort needed for spray nozzle designers to optimize product performance. CFD has been used for modelling sprays for a while now. Multiple approaches are available for spray modelling namely, full resolution (resolving all the length scales in the spray), semi-empirical (uses empirical correlation for droplet break up and stability analysis to generate droplet data), etc. ANSYS Fluids R19 has significantly enhanced spray modelling using VOF (volume of fluid)-to-DPM (discrete phase modelling) approach. As a result, you can directly track interface instabilities and surface tension effects that result in ligament and droplet formation. Due to this, you’ll get fast, accurate spray breakup and droplet distribution with minimal effort.

ANSYS Fluids R19 - Simulation of Fuel Injector
Simulation of high pressure fuel injector spray (Fluent R19)

ANSYS Fluids R19 - Spray Jet Simulation
Simulation of a Spray Jet in Cross Wind (Fluent R19)

Accurate Preventive Maintenance

Engineers seeking to maximize up time and optimize preventive maintenance programs need to reliably predict the location and extent of erosion in pipelines that are carrying particle-laden flows. Previously, static meshes could not account for structural changes in the pipe caused by erosion and its subsequent impact on fluid flow, thereby reducing prediction accuracy. New technologies in Fluent R19 automatically couple structural changes due to erosion with a dynamic mesh so that the simulation more fully captures the degradation arising from erosion.

ANSYS Fluids R19 - Erosion Modeling
Erosion Modeling

More Computational Power

To empower the users with more computational power, significant changes have been made to the High-Performance Computing (HPC) solution.

  • High-Performance Meshing Technologies that help in meshing the complex geometries at lightning speed. Higher Productivity.
  • All core solver technologies utilize four (4) cores without HPC License Checkout. HPC products add on top of these four cores. Hence, this gives you more value for money.
ANSYS Fluids R19: Other Noteworthy Enhancements
  • Blade flutter modelling
  • Risk assessment for Urea Solid Deposition for SCR
  • Lagrangian wall film
  • Thermolysis model
  • Local residual scaling for multiphase
  • Shar/Dispersed discretization schemes with Mixture Multiphase
  • FSI: Accurate leakage flows through narrow gaps
  • Species mass transport improvements
  • Cavitation modelling improvements
  • Native rolling ball fillets
  • Variable shroud gap
  • New Workbench templates

In conclusion, this article has only covered the tip of the iceberg. There is much more to learn about ANSYS Fluids R19. Join us on April 17 for the ANSYS Fluids R19 Update Webinar to get the details! Register now.

Share this on:

ANSYS Discovery Live: Simulations for ALL

This article introduces you to a new, revolutionary technology called ANSYS Discovery Live. This technology provides instantaneous simulation results through an interactive design exploration experience for fluids, structural, and thermal studies.

With the inception of 4th industrial revolution, also called Industry 4.0, every industry is changing rapidly with groundbreaking innovations. In turn, this has placed a severe strain on the product development cycle. Innovative products need to be brought faster to market to reduce opportunity cost. This context has only reinforced my belief to expand the Simulation-Driven Product Development approach like never before.

Engineering simulation, though utilized for industrial applications for several years, is still underused and used by experts. A decade ago, it was difficult to learn and master such a technology. Often executing a simulation task end-to-end took time to set up and run.  In 2007, ANSYS, Inc. launched ANSYS Workbench as, what I believe was, the first step to democratize simulation adoption. Since then, and along with rapid advancements and easy availability of computer hardware, simulation adoption has grown leaps and bounds.

Greater Power to Design Engineers?

However, until late last year, I felt that there is a stronger need to foster a greater collaboration between the design and simulation engineers. From my experience, I have seen simulation engineers complain about “geometry cleanup for simulation of each design” on one end and design engineers complaining about “huge time taken by an analyst for each design validation” on the other end. With such a to and fro between both teams, there is such a huge market need that needed to be filled. Though there are many engineering simulation software products in the market, no one could democratize the simulation to potentially elevate the role of designers in product development. Although the design engineers have a very important role to play in the product development cycle, they have largely been restricted to developing CAD models at best.

In Fall 2017, ANSYS, Inc. conducted a webinar on a new, revolutionary technology that was going to “change how the simulation was done”. My colleagues from CADFEM Germany called it Das ist der Hammer (translation: it’s awesome). Rarely does a product match its hype, but several of us were blown away while watching the webinar on ANSYS Discovery Live (ANSYS DL). In a whole lot of ways, ANSYS DL is disruptive and it made me rethink how I have been doing simulations.

What is ANSYS Discovery Live?

ANSYS Discovery Live is the newest technology from ANSYS, Inc. HQ at Canonsburg, PA. With this technology, every engineer can use to perform instantaneous multiple physics simulation of virtual prototypes to understand the behavior of the product design.

The development team has leveraged on the advancements in Graphical Processor Units (GPUs), developed new discretization techniques along with their knowledge of advanced parallel solver technology. ANSYS DL is built on Direct Modeler tool called SpaceClaim platform to import and modify the solid geometry with ease. Once you define the physics and boundary conditions, you’ll get results in no time. This is instantaneous, real-time simulation! The technology in ANSYS DL has automated the steps of meshing, building the finite element model, solving and extracting the results in few seconds to give you an insight into your design.

ANSYS Discovery Live
Instantaneous Simulation for Every Engineer

Why is ANSYS Discovery Live Unique?
  • Instantaneous results show up for any change in geometry. No need to setup the simulation again. [VIDEO: 50 Simulations in 15 Minutes]
  • It combines GPU-based solvers for multiple physics.
  • You can easily integrate ANSYS DL with flagship ANSYS, Inc. products for advanced studies.
How does ANSYS Discovery Live change things?

Design engineers tell me frequently that several ideas go untested and they are totally dependent on the analysts. I could hardly do anything, but empathize with them. On the other hand, executing any simulation task leaves analysts with limited time to explore different design concepts.

With ANSYS DL, design and simulation engineers can quickly discover the behavior of their product live and instantaneously. ANSYS DL has created a fundamental shift by moving from design verification to experimenting and gaining deeper understanding. This is a huge benefit because you can evaluate several design iterations early in the design cycle. The ease of setting up the problem in ANSYS DL enables design engineers to quickly check the ideas in a shorter time frame. This also allows them to reduce dependency on the simulation engineer. The latter will still continue to perform traditional simulation tasks, but ANSYS DL gives design engineers more power to contribute to product development.

ANSYS DL marks the next step by ANSYS, Inc. to further democratize simulation adoption across different industries.

How can CADFEM help you?
  • Greater Understanding of Hardware for Simulations. Partnership with major brands such as HP and NVIDIA allows us to help you select the appropriate hardware for your simulation tasks.
  • Strong technical expertise will help you solve your engineering problem.
Download ANSYS DL & Attend Webinar

ANSYS DL is available as a Technology Preview until February 7. With this preview, you can test the pre-release locally on your machine by downloading or through your favorite internet browser.

Download ANSYS DL today. Also you must attend the ANSYS DL Webinar as we kick start the 2018 CADFEM Technical Webinar Series. You can do this by accessing the below links.

  • DOWNLOAD ANSYS Discovery Live (until Feb 7). You will need to register using a form and then you’ll get instant access to this exciting technology!
  • REGISTER for WEBINAR: Simulations are Now Accessible to Every Engineer (Feb 1 at 2:30 PM IST)
Share this on:

Maximize Fracking Profitability with ANSYS

This article explains how ANSYS and few other tools can be used to perform hydraulic fracturing, or commonly known as fracking, to reduce costs and increase profitability of shale gas projects.

Shale Gas

Shale gas is a form of natural gas trapped within shale formations. Because of its abundance, shale gas is a lot cheaper than it has been in years. Hydraulic fracturing or fracking helps in extracting it efficiently.

According to American Enterprise Institute, “the direct benefit of increasing oil and gas production includes the value of increased production attributable to the technology. In 2011, the USA produced 8.5 trillion cubic feet of natural gas from shale gas wells. Taking an average price of $4.24 per thousand cubic feet, that’s a value of about $36 billion, due to shale gas alone.” As a result of increase in fracking, natural gas imports in United States reduced by 25 percent between 2007 and 2011.

What is Fracking?

The term simply means creating fractures using hydraulic fluids. In this technique, production teams pump huge volumes of water and proppant at high pressure into the gas well. They also mix a few chemicals, which improve fracking performance, along with the water during pumping. Shale layers, being less permeable, minimize the flow of the natural shale gas trapped.

Fracking is useful in creating a connected fractured network between pores of the rock through which natural gas escapes out. In the first step, production teams drill horizontally along the shale layers. From the perforations, specialists pumps water into the rock. Since water is sent in with high pressures, the shale layers fractures. Once the pressure is decreased, they retrieve water from the shale layers leaving behind sand particles. However, the proppant dwells in the rock layers keeping the cracks open thereby allowing gas to escape.

Benefits and Disadvantages of Fracking

Fracking helps in accessing the natural shale gas trapped deep down beneath the earth. With traditional methods of extraction, we cannot exploit this energy potential. Recently-developed methods of vertical and horizontal drilling added favor to fracking. They permit drilling thousands of feet deep inside the ground in order to access the trapped shale gas.

It is said that shale gas causes lesser air pollution when compared to other dirty fuels like coal and oil. However there are ways in which fracking itself can cause more devastating effects such as air emissions and climate change, high water consumption, water contamination, land use, risk of earthquakes, noise pollution, and health effects on humans.

Economic Benefits of Simulation

To achieve an optimal design for a gas well, standard industry practice is to conduct a large number of field trials that require high capital investment and time which significantly increases the project value.

In order to obtain a profitable production of shale gas, I recommend you to use a fully coupled 3D hydraulic-mechanical simulation. Obviously the costs of such simulation are a lot lower than traditional methods. Many of our customers in the Oil & Gas industry have yielded better output with a higher project profitability.

You can find the schematic view of simulating Hydraulic Fracture below.Schematic view for fracking simulation

Essential Pre-Requisites for Simulation

We gather the input data for simulation from different physics such as geology, petrophysics and geomechanics. From the geology of the rock structure, we extract the lithology and layering, altitudes of beddings and natural fracture data. Accurate determination of petrophysical properties for both the reservoir and fluid contents is necessary. We also need to consider features like porosity, permeability and saturation for the reservoir. It also includes evaluating the properties that help in determining the hydrocarbon concentrations in the reservoir and its ability to produce the gas.

Along with the surface and sub-surface properties of the rock, the in-situ stress parameters also have same importance in simulation. I also account for elastic properties and strength parameters of intact rocks. The geomechanical studies of the rock structure also reveal the strength parameters of natural fractures, if any. Using multiPlas, I model these rock-specific material parameters and joints.

Of course, gathering this data can look daunting to you. However our expertise combined with strengths from Dynardo GmbH – the leading global experts in simulation of hydraulic fracturing – can help!

Fracking Simulation – Readying the Model

In the simulation of fracking process, I use a sequential coupled hydraulic-mechanical modeling approach. Therefore, I construct two models – a hydraulic flow model and a mechanical model simultaneously.

3D model with different soil layers for fracking simulation
3D model with different soil layers

To account the strength and stress anisotropies of the rock structure, I need to consider a 3D model. These variables help us to constantly monitor the behavior of fracking process. To capture the anisotropic nature of the rocks, you’ll need strength and stress anisotropies of the rock matrix and fracture system.

Sequentially Coupled Hydraulic-Mechanical Analysis in ANSYS

In ANSYS Mechanical, we start with a transient hydraulic flow analysis (analogous to transient thermal analysis) to understand the pore pressure field. The pressure increases in the fracture-initiated locations due to the pumping of fluid and low permeability of rock. If the pressure is large enough, the rock starts to fail and fractures open up. As a result, the permeability of the rock structure increases and changes the pressure distribution in the hydraulic flow model. From a mechanical perspective, pressure increase changes the effective stresses within the rock. After every fluid time increment, change in the mechanical forces from pore pressure change will be introduced into the mechanical analysis. The forces on every discretization point of the smeared continuum are computed from the pore pressure gradient.

I setup the coupling inside ANSYS in an explicit manner. Consequently, one iteration cycle is performed for every time step. The time step needs to adequately represent the progress of the fracture growth. At each time step, a transient hydraulic flow analysis starts first. Then the mechanical analysis with the updated pressure field from the hydraulic flow model is conducted. The mechanical analysis results in updated stress, plastic strain fields and hydraulic conductivities. i apply the updated hydraulic conductivities to the hydraulic model in the subsequent time step.

Crack expansion in the model while performing fracking analysis
Crack expansion in the model

In mechanical analysis, the development of fractures is represented by a plastic model in ANSYS. As a result, I cannot directly measure fracture openings and hence I’ll need to calculate it based on the plastic strains.

Model Calibration & Optimization of Fracking Paramaters

Because of large number of statistically-varying and reservoir parameters, the reservoir model needs advanced calibration procedure. At first, I will need to calibrate numerical parameters such as maximum permeability of open joints or energy dissipation at pore pressure frontier.

After calibration of all the parameters, I identify the most important parameters contributing to maximum crack volume using optiSLang software. As you will recognize, maximum crack volume correlates to maximum shale gas output. I validate the behavior of such important parameters and then calibrate the analysis model to the field measurements. I use the calibrated model later in order to optimize the simulated volume and predict the gas production rate of the wells.

Summary & Outlook

Evidently, application of simulation to the fracking process will underline its predictability. Simulation cut downs the costs of field trials, brings down the time-to-market thereby significantly increases the project profitability.

If you’re into gas exploration, you should contact us filling this form or by writing to sales@cadfem.in. We’ll be glad to explain some of our recent projects that have benefited customers in Oil & Gas industry.

Share this on:

ANSYS License Management Made Easy!

Virtual Product Development has enabled companies to predict with confidence that their product will thrive in the real world, helping them to the solve the most complex problems which are limited only by imagination. This wouldn’t have been possible without ANSYS, the market leader in engineering simulations, that is used by many companies spanning enterprises to startups. Consequently, one of the prime goals of these product companies is license management – manage software license requirements among different teams effectively without affecting team’s productivity or asset utilization.

In this article, I will describe the new developments in ANSYS 18.0 that will make it easier for managers and license administrators to manage licenses better.

How To Get Started?

To begin with, the first step in managing the licensing resources is to track current usage of these resources. Previously, tracking and preparing the reports of ANSYS software license usage was always a tedious manual task of looking into the log files and searching for a specific license. As a result, one common question I received on CADFEM’s support hotline -“Is there a better way to track our license usage?” With the release of ANSYS 18.0, this job has eased to a certain extent.

With ANSYS 18.0, License Management Center provides the tools which help license administrators to obtain effective reports from the usage log files. Therefore, reports can be extracted about anything from current usage to peak usage and license denials in a tabular or a histogram form for a requested duration.

ANSYS License Management Center

Opening the ANSYS License Management Center will open up the license manager in the default browser.

  • Windows: Start -> Programs -> ANSYS Inc. License Manager -> ANSYS License Management Center
  • Linux:

    License Management
    License Management Center

    /ansys_inc/shared_files/licensing/start_lmcenter

New subsection has been added for reporting with 4 options. We will discuss each of these options in brief.

Current License Usage

With the View Current License Usage option, you can track current license usage. It highlights all available licenses on the server along with the maximum number of licenses. It also reports the current total license usage along with the license usage per user; different color for each user. In addition, clicking on Show Tabular Data will provide you more information about user count, user names, hostname and Start date in tabular format.

License Management
Current License Usage

Also, you can obtain similar data from Client ANSLIC_Admin Utility for older versions of ANSYS. For the manager and organization, the most important report is the licenses usage over a period of time. Next three options will help them in getting it.

License Usage History

License Management
License Usage History

This option helps in tracking the usage of license for a given period of time. Click on License Usage History and choose the duration and then click on Generate to obtain the histogram for the given duration. Once the data is generated, you get the option of monitoring the data for a specific license. Even a customized duration can be specified to track a particular license usage.

License Management
License Usage History – Specific License Type

Peak License Usage

License usage history report can be confusing at times even for experienced users. Hence if you want to track more simplified averaged peak usage per day for a given period of time, please select Peak License Usage option. By following similar steps as for License Usage History, select the time period and hit generate.

License Management
Peak License Usage

Here you will have more options for filtering out the data with respect to licenses type and months of specific interest. Along with it, you can also extract data for a complete week (24/7) or only for working days (24/5). Clicking on Show Tabular Data provides daily, weekly and monthly average of each license in a tabular form. Now, that’s going to be quite useful for the managers and licenses administrators.

License Management
Peak License Usage: Tabular Form

License Denials

Similar to Peak License Usage, the License Denials option will show the average denial of license due to insufficient licenses or for any other reason for a day for requested time duration. This helps in tracking the requirement and planning for future needs.

License Management
License Denials

Though the Reporting Tool in ANSYS doesn’t include more sophisticated options and filtering methods, it allows managers to track the license usage in many different ways without manually going through log files or investing in third-party tools.

License Management Made Easy

Thanks to ANSYS 18.0, License Management Center is even more potent and useful for you – the department heads, managers and license administrators. You can monitor license usage in real-time or historically, evaluate peak license demands and license denials. As a result, this new feature will allow you to evaluate asset utilization, manage internal license demands, forecast the need to acquire additional license among others.

There’s also a nice YouTube video that is a little more crisper than my article. It covers pretty most of the options that I have described in this article. If you are short on time, this video may help.

I would like to know if there are questions regarding license management that you’ve not been able to address so far. Maybe I can help? Hence please do use the comments section below to reach out to me. I’ll be glad to be of help.

I hope you found this article useful. Please feel free to share it with friends and colleagues. If you haven’t subscribed to this blog yet, please do so on the right side of this article or through this link.

Share this on:

The Decade That Was …

In the CADFEM Journal (previously Infoplaner; in German), an announcement was made in the first issue of 2007 about the commencement of India business. This March, CADFEM Engineering Services India (CADFEM India) celebrates its 10th birthday – a decade in business. The company started out as a four person team with the vision that it could help customers in India recognize and realize the benefits of simulation-driven product development. 10 years on, the company has evolved into a confident engineering business, with over 50 colleagues, that has helped hundreds of engineers to realize their product promise.

The Decade That Was …

During this time so much has changed. The world has got smaller, faster and ever more changing. Technology has both been an enabler and a challenge to small businesses and large enterprises alike. As a responsible business, the company’s constant endeavour has been to offer customers the best-in-class solutions to their engineering problems. Today CADFEM India is proud to have gained trust from several local and global companies whose engineers rely on its products, services and know-how on a daily basis.

CADFEM India is a strong channel partner to ANSYS in India by offering the full range of physics (structural, fluids and electronics) across India. This partnership is helping CADFEM increase the rate of adoption of simulation in the country. The organization is structured towards providing and supporting customers with ANSYS software. Today the company has more than 40 engineers comprising of the core technical team, sales and marketing that engage customers in multiple areas of engineering analysis. The team is highly skilled to offer training programs for novices and experienced engineers on a plethora of engineering topics. Several customers, with origins in Germany, are long standing customers of CADFEM in India. CADFEM is the preferred simulation partner for customers owing the nature of strong and high-quality support. Deepak Joseph, the Head of Development (Truck) at Knorr-Bremse Technology Center India, and his team in Pune have been recipients of CADFEM’s technical support regularly. While thanking CADFEM for offering “extended support” to his team, Deepak recently said that CADFEM ”helped us understand ways to achieve accuracy.”

Listing of milestones of CADFEM India

All tools which are critical for success

CADFEM India offers several complementary solutions such as optiSLang (of Dynardo GmbH), Rocky DEM (particle simulations) and simulation-ready hardware. Since engineering simulation requires more than just software, CADFEM India supplies all the tools which are critical for success in simulation – all from one source. As a result, customers in India not only benefit by receiving leading software and IT-solutions, but also obtain support, consultancy and transfer of know-how. The core philosophy ingrained within every colleague is to ensure that customers realize the most return of their simulation investment. Dynardo’s CEO, Dr. Johannes Will, says “Over the last 7 years, CADFEM India has become an important partner for Dynardo to serve the optiSLang business in India as well as to support the Dynardo consulting activities. I personally enjoy that relationship and look forward to intensify the joint business success over the next years.” Since 2011, CADFEM India has organized the Indian edition of the Weimar Optimization & Stochastic Days. In 2016, over 80 attendees came together to discuss the topics of optimization and robust design for sixth year in a row.

In addition to the software business, many customers consider CADFEM India as a reliable engineering consulting partner. Several customers choose to contact CADFEM to seek simulation on demand. CADFEM India’s Managing Director, Madhukar Chatiri says that “this offers a good opportunity for us to demonstrate the power of ANSYS to the customer.” Over the years, CADFEM has solved many engineering problems in automotive, aerospace, consumer appliances, rotating machinery, watches, food & beverage and many more industries. One such example of a strong customer relationship is with Traunreut-based Bosch und Siemens Hausgeräte GmbH (BSH). For over two years from 2008, BSH worked intensively with two engineers from CADFEM India. As a result, there has been a strong partnership between BSH and CADFEM India. Speaking about this, Dan Neumayer, Head of Pre-Development at BSH said “we could have a mutual cultural understanding and a common way of thinking and working. This intensive learning forms a particularly important basis for our long-term cooperation and we see this as one fundamental success factor.”

Group Photo in the decade that was
Mrs. & Mr. Guenter Mueller while visiting CADFEM India in 2015

esocaet program starts in September 2017

One of the top most challenges for employers in India is the low number of engineers skilled with simulations. To bridge this demand-supply gap, CADFEM India has invested in ANSYS Authorized Training Centre that started in September 2015; over 50 engineers have graduated from this centre. Furthermore, CADFEM has partnered with PES University in Bangalore to bring the much-acclaimed esocaet Master Program in Applied Computational Mechanics to India. The esocaet program offers tremendous opportunities to engineers for continuous learning. The first course will begin in September 2017.

CADFEM India has been operationally profitable since many years – this has allowed the company to scale its investments in India consistently. The company has a long-term orientation, offers employees a lot of independence but functions as a responsible partner to customers. This allows the company to respond with agility to the dynamic needs of the market.

The company has geared up for the next decade of business in the Indian subcontinent. Having recognized the needs of the market, the company is betting big in the areas of Additive Manufacturing, Electronics and Digital Cities. CADFEM India has made another significant investment into the newest partner of CADFEM International – CADFEM SEA Pte. Ltd. in Singapore.

In 2016, the company was recognized as one of the 20 Most Promising Engineering & Design Solution Providers in India by the popular CIO Review magazine. Madhukar still fondly recalls the day when he formulated the vision for the Indian business in his mind. He adds “What a journey it has been for many of us! While waiting for our connecting flight at Mumbai airport, Guenter Mueller discussed the idea of a joint company in India. We thank our customers and partners for choosing to work with us. It has been and is our pleasure to serve the engineering market in India in the past decade.”

Share this on:

3 Benefits of ANSYS SpaceClaim for 3D Printing

In this article, I will describe 3 benefits of ANSYS SpaceClaim Direct Modeler for 3D Printing and other applications. Specifically I will focus my attention on the Facet Tool in this article.

While searching for freely-available CAD models on GrabCAD.com, I chanced upon the challenges section because it piqued my interest. To my surprise, I found about 75% of the recent challenges to be related to topology optimization. For most of these challenges, lightweighting will yield a final design output that is optimum in weight. However such an output will be complex for traditional manufacturing processes. In the recent years, additive manufacturing or, often referred to as, 3D printing has appeared to be the manufacturing process of choice for several contemporary applications.

For topology optimization, ANSYS is the simulation tool of choice. In the latest Release 18, a significant thrust was provided to this topic. The technology is very powerful and highly-effective for lightweighting the designs. Typically, topology optimization results in the design in STL file format. In my experience, this design output is often fraught with poor facet quality and this requires cleanup by a competent tool.

Typical STL File Output of a Bracket after Topology Optimization towards 3D Printing
Typical STL File Output of a Bracket after Topology Optimization

The full suite of ANSYS Simulation Software offers not just solvers for multiple physics, but also several value added tools such as ANSYS SpaceClaim Direct Modeler (SCDM). This tool allows product companies to launch their offerings faster to market.

Now SCDM has several useful features that allow geometry manipulation and clean-up. Among many features, I found the Facet Tool to be extremely useful. After completion of topology optimization, the STL file output from ANSYS is imported into SCDM.  This Facet Tool helps in cleaning up the STL file output containing poor facet quality and helps me prepare the design for validation using ANSYS Mechanical.

For better understanding, I have included the typical workflow below.

Workflow for Topology Optimization for 3D Printing
Workflow for Topology Optimization

With this context in place, I will now introduce you to the 3 significant benefits of using ANSYS SpaceClaim Direct Modeler for 3D Printing applications.

HIPP Add-In for Reverse Engineering

HIPP is an SCDM add-in developed by ReverseEngineering.com. This tool is quite useful for engineers performing reverse engineering – with the eventual goal of producing the desired part using 3D Printing. For this case, the approach typically starts with scanning of the part desired for reverse engineering. The scan results in an STL file format created directly in SCDM; this automatic scan to STL is powered by the HIPP add-in. The Facet Tool in SCDM is then used to repair and prepare a watertight geometry.

Here’s an example of the scanned geometry of top profile of a piston rod that was generated in SCDM using the HIPP add-in. The facets in this geometry did not capture the profile accurately. Furthermore the geometry has undesired holes along with unwanted parts.

Image of a scanned geometry of a part in SCDM (using HIPP Add-In) for 3D Printing
Scanned geometry of a part in SCDM (using HIPP Add-In)

Using the Facet Tool, the repaired geometry is now ready for topology optimization and design validation before producing it using 3D Printing.

Image of the modified geometry in SCDM using Facet Tool for 3D Printing
Modified geometry in SCDM using Facet Tool

Save Resources – Faster to Market

There are numerous software tools for STL preparation, however SCDM Facet Tool has many value-adding, additional capabilities. With a very little investment, the Facet Tool provides a strong hold in combining multiple solid parts with faceted geometries in a user-friendly manner; this feature has several advantageous implications for 3D printing. Furthermore the tool is very easy and requires little knowledge for geometry repair and preparation. To prepare the bracket geometry (illustrated at the beginning of the article), it took me 10-15 minutes. See the below image. Now I found it to be fairly quick when compared to 2-3 times more using other facet modeling tools.

Image of bracket geometry modified after using SCDM Facet Tool for 3D Printing
Bracket geometry modified after using SCDM Facet Tool

Preventing Failures in 3D Printing

The Facet Tool has features to detect thickness and overhang problems before the model is sent for 3D Printing. Now these overhangs present a challenge to 3D printing without using support material. Problems such as these can be prevented by few techniques like tear-dropping, tapering among others. The effects of overhang cannot be judged immediately until you are a 3D Printing professional.

Facet Tool has a feature which detects the overhangs by providing parameters specific to 3D Printing. In particular, the thickness feature detects all geometry that is thinner than the minimum thickness specified by the printer OEM. In addition, I could understand thickness and overhangs-related problems beforehand by providing the direction of printing as well.

Other Applications

This topic is also of CADFEM’s particular interest because we invest into Digital Cities – a strategic initiative of CADFEM International that aims to simulate cities of our future. This topic is quite special and important since it involves studying the effects of disaster scenarios such as earthquake, tsunamis, pollution, crowd behavior among others.

virtualcitySYSTEMS, a CADFEM International group company, develops 3D city models using scanned data of terrains. For these city models, we use the Facet Tool to repair the geometry before performing urban simulations.

In future posts, I will delve further into using CFD and particle simulations for better modeling of 3D Printing applications.

Share this on:

Electromagnetic Simulation for Antennas

In this first part of a multi-part series, I will discuss many aspects of antenna design & analysis with the underlying theme of electromagnetic simulation-driven product development. In this part, I will briefly talk about performing stand-alone Antenna Design, Analysis & Optimization using Electromagnetic Simulation.

Increasing Importance of Electromagnetic Simulation (EM)

While still in university, I imagined antenna design to be very simple. Based on the given frequency, we will need to calculate dimensions and then fabricate the design. That’s it. A decade ago, I found simulation to appear like dark art or black magic. If the fabricated antenna did not work well, I needed to iterate the physical design till it gave good results.

During the recent years, several EM simulation tools have emerged to evaluate the exact solution of Maxwell Equations for estimating the electromagnetic behavior of the devices. These tools used underlying methods like Finite Element Method (FEM), Method of Moments (MoM) and Finite Difference Time Domain (FDTD). Generally, we can divide the part components of the electronic design into active and passive devices. The modelling of the active devices is based on nonlinear measurement data parameters like S-parameters and X-parameters. When we come across modelling of passive devices, they are very simple because of their linear nature. However, it is important to understand the limitations of those devices.

The main role of the simulation is for to engineers to be able to accurately predict how complex products will behave in real-world environment enabling the complete virtual prototyping. ANSYS HFSS, a state-of-the-art high-frequency electromagnetic simulation, helps to estimate the radiation characteristics of the antenna and optimize the design as per requirement.

Parameters To Be Considered For Antenna Simulation

In general, engineers know that dimension can be reduced by increasing the substrate dielectric constant. Using standardized equations, we can estimate the size of the patch. However we cannot estimate radiation characteristics among a few other quantities. Using simulation tools, we can replace physical iterations with virtual iterations; we can identify the optimal design that matches the required specifications.

Why do some engineers get different results? Is there anything else that needs to be considered? Yes, engineers who focus only on model dimensions and not on boundaries and excitation will obtain inaccurate results.

Modeling and Setup

Let me consider the example of a GPS antenna that needs to have a gain of 3.5dB. For this gain, we’ll need to identify a antenna design with the smallest possible antenna dimension.

Let’s look at three substrates RT Duriod 5880, FR4 and Alumina. Using ANSYS HFSS, you can model the full antenna by using in-built modeling options or import the design from external CAD software. Initial dimensions of the patch are calculated using standard formulas available in academic literature.

Image of 3D CAD model of a patch antenna before performing electromagnetic simulation
Antenna Model

Patch antennas can be fed power by various methods such as microstrip line or coaxial/SMA. While using coaxial input, many don’t consider the dimensions of the coaxial. A good engineer initially checks for the dimensions of the coax in order to get the characteristic impedance, which directly affects the frequency of operation and voltage standing wave ratio or VSWR.

For assignment of different materials for model, HFSS has an inbuilt material library where you can select the required material for substrate, conductors, etc. If you want to use a material which is not in the library or if you want to add some frequency-dependent properties, then you can modify or create a new material.

Image of Materials available in HFSS before performing electromagnetic simulation
HFSS Material Library

Image showing addition/modification of materials before performing electromagnetic simulation
New Material Creation

For antenna design, radiation is another important boundary in order to accurately estimate the EM emission. As a good practice, the distance of at least λ/4 or λ/8 must be maintained between the antenna and the boundary. For example, λ/4 will be a good distance for radiation boundary and λ/8 for PML boundary. This is an important aspect that many engineers fail to consider. Upon completion of the initial setup, I ran the simulation to check for its performance.

Parameterization of Antenna

After simulation, check the input electric field in coaxial and the impedance of the transmission line/coax in order to verify the expected excitation. In post-processing, do check important parameters for radiation characteristics like pattern and gain. Even the near field data, which is complex to obtain from measurement, can be estimated with simulation.

Since we are not considering any fringing field and probe effects, there will be variation of results. To further improve the design, I suggest using optimization algorithms such as Optimetrics or ANSYS optiSLang. Such tools also permit sensitivity of the design due to fabrication tolerances.

The available optimetrics options in HFSS
Optimetrics in HFSS

Image describes the effect on resonance frequency due to probe position variations while performing electromagnetic simulation
Probe position effect on resonance frequency

Optimal Design of Antenna

Finally, the best design can be selected after evaluating the gain characteristics of the all variations. For the three substrates, I evaluated the optimized dimensions of the patch using Optimetrics:

  • 12.5 x 10 cm² for Duroid
  • 9.5 x 7.5 cm² for FR4
  • 7 x 5 cm² for Alumina

Image shows the estimated gain plot for different substrate materials while performing electromagnetic simulation
Gain Variation vs Substrate

Per this, antenna with FR4 substrate meets the required gain of 3.5dB with the least possible dimension. Better performance can be obtained by varying other parameters such as height of the substrate, etc.

The next time you perform electromagnetic simulation of antenna, do remember to consider all the boundaries.

This concludes the first part of a multi-part series on antenna design & analysis. In the next part, I will discuss about antenna placement analysis.

If you have any questions, please feel free to comment or fill out the contact form.

Share this on: