Fast-Tracking 5G, Massive Machine-Machine Communication (mIOT) & Advanced Driver Assistance Systems (ADAS)

This post discusses CADFEM expertise to maintain pace in Futuristic 5G, mIOT, and ADAS systems. 

INTRODUCTION

Roadmap from 1G to 5G-ADAS

From the past few decades, the world has witnessed many versions of a cellular network, the 1G version was a basic voice communication system that supported only Analog modulation. The flavor of data connectivity was present in the second version that used in digital technology. 3G version flavored highly improved data connectivity using technologies such as Wideband Code Division Multiple Access (WCDMA) and HighSpeed Packet Access (HSPA). Currently, 3G is the largely sold version of cellular networks around the globe although the next 4G network version is closing the gap quickly. The third and fourth generations (3G and 4G) of mobile communication technologies are widely deployed, providing voice and mobile broadband as their main services. Presently the world is enjoying the pleasure of 4G that uses orthogonal frequency division multiplexing (OFDM) technology to provide bandwidth of 20 MHz with Multiple Input and Multiple Output (MIMO) antenna transmission Technology.

The world is progressing rapidly towards next-generation cellular communication and is on the verge of entering into the 5G era, with completely new infrastructure and technology. A challenge of today’s 5G research is in the waveform frequencies that are being used around the world as signals which will suffer from more noise at these frequencies. And these noise levels can be minimized to some extent by performing proper filtering at waveform level but at the same instance, it can be reduced majorly by applying proper signal processing technique at the transmit antenna side & receive antenna side. FBMC is an upgraded version of OFDM, which offers benefits such spectral efficiency and resistance to multipath with zero inter-carrier interference and this is expected to come with 5G. There is a rapid increase in demand for high definition multimedia streaming around the world. The currently utilized microwave frequencies won’t be sufficient to meet this demand due to a shortage of bandwidth.

We need up-gradation to mm-Wave frequency bands that provide a larger bandwidth to meet this demand. Several GHz of the spectrum at mm-Wave frequencies provide an abundance of bandwidth to support GBPS data rates. This abundance in bandwidth helps to incorporate large array that provides high directivity to combat path loss and reduced interference. We can successfully transmit a huge amount of data known as BIG DATA by utilizing this spectrum. The signal at these higher frequency band suffers higher path loss and rain attenuation due to which it is not suitable for outdoor communication. The wavelength of the mm-Wave signal is very small due to which it becomes practicable to embed the multiple numbers of antennas that will direct the signal into highly concentrated beams with sufficient gain to master propagation loss. This process of sharpening of beams is called beam formation, where signals will be added constructively at some point in space. Upcoming 5G systems are predicted to introduce these profound technologies.

Why 5G?

The urge for data usage is increasing day by day globally and the existing LTE network needs to be improved with LTE-Advanced that provides a bandwidth of maximum 100MHz. Even though it is continuously updated through new releases, and with LTE Advanced Pro Release being the latest one, the development of the fifth generation has been initiated. After a few more year’s LTE-Advanced technologies won’t be sufficient to satisfy the increasing data urge around the world and there will be a need for the new version of a cellular network that can satisfy the data requirements in coming years.

5G network is visualized to simplify the burden on current cellular infrastructure by offering significantly higher data rates through increased channel bandwidth. 5G communication system is expected to exploit the spectrum band at millimeter-wave (mm-Wave) frequencies. But the mobile communication at these mm-Wave spectrum band is far more complex than the current frequencies that are being used around the world as signal suffers higher propagation loss. Antennas for next-generation 5G will make use of shorter element size at high frequencies to incorporate beam formation capabilities. This helps to increase the capacity of the cellular network by improving the signal to noise ratio (SNR) and maintain an optimal BER (Bit Error Rate) at mm-Wave frequencies. 5G mobile network offers a vision of “everything everywhere and always connected” which will make use of microwave and Millimetre-wave frequencies ahead of 24 GHz. 5G mobile network is surmised of providing minimum data throughput of 1 Gigabit per second. However, due to the increasing demand for higher data rates and larger system capacity, in addition to the emergence of new Internet of Things, ADAS, and safety-oriented mobility use cases, the fifth-generation (5G) is currently being discussed and developed.

Different Dimensions of 5G

Three Dimensions of 5G are:

  • Massive Machine-Machine Communication (mIOT)
  •  Ultra-reliability-ADAS systems and
  • Enhanced Mobile Broadband (eMBB).

A key scenario for 5G, IoT, and ADAS System has connected mobility as shown in the above image, which utilizes vehicular communication for such things as infotainment, safety, and efficiency. While these requirements are already in the scope of 5G standardization, the ability to meet the requirements in practice is more important than ever because of the criticality of the safety-oriented connected mobility use cases. These cases rely on vehicular communication for such capabilities as platooning, cooperative awareness, and self-driving cars.

CADFEM UNIQUE 5G ADAS SYSTEM PROTOTYPING

Simulation enables innovative ideas, that can push products beyond their traditional limits, to be tested and realized without the burden of prototype costs and time. When engineering simulation software made its debut nearly 50 years ago, early adopters quickly distinguished themselves from those companies who were slower to recognize and embrace its potential. Tomorrow, it will be part of the toolbox for every engineer. As we push for ever-smarter and more efficient product designs like 5G, we can no longer afford to only look at a single aspect of performance or alone part in isolation. In the past, engineering simulation teams were likely to isolate just one critical physics. Today, thanks to improvements in simulation software, hardware, and processing speeds, it has become much easier for engineers to study multiple physics and assess overall product performance. This is critical for the 5G ADAS Smart System, where engineers can simulate and analyze thousands of possible designs, early in the ideation process, to identify the optimal one.

Traditional workflows don’t work in the high di/dt 5G ADAS smart system era because they are blind to the spike voltages induced across layout parasitic; V_spike = L_parasitic * di/dt. In the high di/dt era, it is necessary to add a post-layout analysis step to the workflow between the pre-layout circuit simulation and physical prototyping steps. Measure predetermined Power integrity, Signal integrity, EMI, Thermal, and Structural reliability/stability competencies using simulations and practice these competencies in a risk-free environment and manage to have high knowledge retention. Ease the goal and predict with confidence that products will thrive in the real world with good expertise and a wide range of simulation solutions/ prototype inherited by CADFEM as shown in the below table and figure.

Are you working in mmWave 5G Smart Mobility Communication System and worried about the complexity?

CADFEM can help & bring down your headache considerably whether you are involved with the design of Systems, Base-band, RF, or Antenna systems. CADFEM will explain how and why to do post-layout analysis, specifically how to use the ANSYS SI wave field solver to extract layout parasitic into an EM-based model that you can add to the pre-layout circuit simulation. In this way, the spike voltages can be determined, and (using “What if…” design space exploration) reduced to an acceptable level before sending the layout for fabrication. Don’t smoke those precious power devices with expensive, time-consuming, non-deterministic board spins: use this “virtual prototype” method instead as shown in the below figure.

As 5G radio frequency (RF) and wireless communication components are integrated into compact packages to meet smaller footprint requirements while improving power efficiency, electromagnetic field simulation is the only way to make these trade-offs.

mm Wave 5G Smart Mobility Communication System requires more functionality in smaller multivariant packages. As the global power budget is reduced and the operating frequencies required to deliver rich features increase, engineers are confronting the issue of power supply noise. The chips, packages, and printed circuit board all contribute to power supply noise, so the complete system must be optimized to limit noise across the voltage and ground terminals of the transistors for error-free performance. SI Wave is a dedicated tool for electrical analysis of full PCB and complex electronic packages. SI Wave solves interrelated PI, SI, EMI challenges to deliver predictive analysis for your design. It provides solutions in both the Time & Frequency domains. HFSS 3D Signal Integrity Electronic Package Design access a streamlined 3D design flow that enables complete package system analysis with Seamless integration with EDA layout tools to create customized signal integrity, power integrity and EMI design flows. Begin the simulation process by importing the electrical model of the integrated 5G Chip (PHY model and patterns), package and board, and various memory chip models provided by manufacturers into Siwave. Then solve the imported structures and perform multiple simulations to compute resonances, trace characteristics, discontinuity reflections, and inter-trace coupling. Engineers can extract S parameters, an IBIS interconnect model, and a full-wave SPICE model. These can be imported into ANSYS NexximSIwave’s circuit simulator, for time- and frequency-domain analysis.  Nexxim can be used to generate time-domain eye diagrams and to check the data timing and voltage for overshoot and jitter of the 5G-High Speed Board. The port excitations can be set by drivers in IBIS formatpseudo-random bit sequence (PRBS) used can be used to reproduce real use cases. Eye diagrams can be used to indicate the allowable window for distinguishing bits from each other at the receiver end. The required height of the window is given by the noise margin of the receivers. 

5G Antenna System for ADAS application

5G System will be crucial to the success of autonomous vehicles by aiding in the detection and localization of pedestrians, vehicles changing lanes, and parking and braking events in complex traffic scenarios. The successful development of such systems requires a highly accurate, full-wave electromagnetic simulation tool to accurately model all system components, from inside the IC to the PCB and antennas. ANSYS HFSS is useful for electromagnetic full-wave simulation and circuit design analysis. The ANSYS solution allows us to achieve fast and highly accurate results of physical models/components used in the mm-wave 5G IC system. Moreover, ANSYS provides solutions for many issues involving radar systems on a chip that are unique to ANSYS. 5G Smart Mobility Antenna design starts with selecting and optimizing a single antenna element, but that’s the easy part. No radar system for anything as complex as autonomous driving can operate with a single antenna; an array of antennas is needed. An array can transmit radio waves in a pattern that emulates a spotlight: a bright focus point in the center. ANSYS HFSS electromagnetic field solver can be used to simulate such antennas at the very high frequency needed in automotive applications.

Problems in any part in the mm-wave 5G Smart Mobility Antenna system can ruin the functionality of the whole system, potentially costing hundreds of thousands of dollars and months of delays. Several sensors are needed to cover all short-range to long-range tasks, adding costs in a low-margin industry. ANSYS HFSS solvers and high-performance computing can be used for the analysis of components like planar inductors, baluns, power dividers, and transmission lines. Parametric sweeps and goal-driven optimization is done inside ANSYS Optimetrics. The efficient hybrid technology FE-BI is used in particular for antenna Design. For larger scenarios, HFSS SBR+ is used to simulate in-the-field antenna performance. For efficient overall workflow, ALinks interacts with the ECAD System for fast design transfer. Parasitic modeling is very important and can be easily achieved by either adding RLC Components directly to the 3D electromagnetic (EM) model or adding lumped components to the exported EM model inside the circuit environment of ANSYS Electronics Desktop. Once the complete circuit model delivers the desired result for parameters such as Q factor, inductance, and gain, we combine all components into a system simulation using the ANSYS RF option.

Software and Algorithm Modelling and Development

Just as in hardware development, simulation has a key role to play in software development. Developing and testing signal processing routines, sensor fusion algorithms, object recognition functions, control algorithms, and human-machine interface (HMI) software, with model-based software development techniques, makes the software robust, less error-prone, and safe. ADAS and autonomous driving technologies greatly multiply the complexity of vehicle systems. Not only do they create more possible causes of failure, but also many more failure cascade paths. Since ADAS and autonomous driving systems inherently have safety implications, any failure can easily be catastrophic, even fatal. Conducting functional safety analyses of such complex systems is tedious, error-prone, and vulnerable to gaps and flaws. Automated functional safety analysis tools are therefore essential to ensure the safety of ADAS and autonomous driving systems. Model-based embedded software development along with a qualified code generator greatly expedites embedded software development. Once the software models are validated, the generated code is guaranteed to be error-free thus eliminating unit testing of the code, and reducing overall software development efforts nearly in half.

CONCLUSION

This Blog presented CADFEM expertise on 5G Smart Mobility era 

I hope you found this blog useful and believe that the contents showcased in this article will help in the evolution of upcoming 5G smart technology. Please feel free to share it with friends and colleagues. If you haven’t subscribed to this blog yet, please do so. 

I would like to know if there are any questions regarding the topics above. Maybe I can help? Hence please do use the comments section below to reach out to me. I’ll be glad to be of help.                                        

Happy 5G Designing…!!!

Cheers,

Author: Mr. Safal Sharma

Author Bio: Mr. Safal Sharma has in-depth hands-on expertise in RF/Microwave test Instruments like Vector Network Analyzer, Signal Generator, Spectrum/Signal Analyzer, DSO, EMI/EMC Pre-compliance Tester. Deep insight knowledge on Wireless technologies/systems such as GSM, CDMA (WCDMA), LTE, LTE-A, 5G, RADAR, MIMO Phased Array Beam-forming & Other communication systems.

Share this on:

Weekly Simulation Round-Up | Issue 5

Banner for Weekly Simulation Roundup

Welcome to a brand new edition of Weekly Simulation Round-Up. As usual, we present you the most interesting articles from this week. As you will notice, electronics is changing the game for product development.


Internet of Things – The Man Who Coined It

Today, Internet of Things is well-discussed as a topic that will revolutionize the way we live and design products. Kevin Ashton, the man who coined the phrase “Internet of Things,” explains what it is and why it matters in less than two minutes.

If you are further interested, do watch a longer version of his talk at 2015 Microsoft’s Future Decoded conference.


Using DEM to Improve Transfer Chute Design

Chutes are commonly adopted in conveying systems as a method of transferring bulk materials from one conveyor belt to another. A poorly designed chute or even the application of a chute out of its original design conditions (higher tonnage, different particle material, wet material, and so on) often lead to problems. This can result in  lower productivity, increased maintenance costs, higher wear rates, or even shut downs.

Rocky DEM, a state-of-the-art discrete element particle simulator, helps engineers design and/or optimize transfer chutes by simulating different scenarios, which reduces the costs of building and testing different configurations (read more).


Simulation Powering Wirelessly Charging Electric Vehicles

Qualcomm Inc, a global leader and innovator in wireless and mobile technologies, is committed to pushing the frontiers of innovation. As a validation of this statement, Qualcomm spent USD 5.5 billion on research and development in wireless and mobile technologies in 2014 alone — and USD 34 billion over the company’s life.

One team, headquartered in Munich, Germany, focuses primarily on making the incremental improvements and technology customizations. This will lead to broad adoption of the first-generation Qualcomm Halo WEVC (wireless electric vehicle charging) technology (read more).


Schiaparelli Mars Lander – What Went Wrong?

Recently the martian lander crashed on the red planet prompting the European Space Agency to summon an investigation. Mission scientists recovered data from the lander before its untimely demise. By performing simulations of Schiaparelli’s control systems using this lander data reproduced this fatal cascade of events (read more).


Turbulence – What a Drag It Is When You Drive

Turbulence is a nightmare for several air travelers. It can spill your drink, bounce you off the roof of the cabin if you haven’t fastened your seat belt—and even bring a plane down. Airline pilots are super aware of it. Turbulence refers to the swirly chaotic movement of fluid particles. While most feared and destructive in air travel, turbulence is all around us and occurs every time you drive. Here’s an article from ENGINEERING.com talks more about this phenomenon. (read more).

Image of a racing car with streamlines around it and a stress contour plot on its surface.


So, folks, that was all for this week. We will be back again with a new edition next week. Do feel free to share your feedback or questions with us.

Share this on:

Weekly Simulation Round-Up | Issue 3

Welcome back to the Weekly Simulation Round-Up. I hope you had a good start to the new year. Are your sticking to your new year resolutions so far? Either way, I hope this week’s posts provide you motivation to your resolutions.

CAE simulation opens up untold opportunities and it allows engineers to advance in many more areas of application. In this weekly simulation round-up, you will learn about CADFEM’s contribution to the world of simulation.


ANSYS: The IoT and the Economic Data

The economics of the internet, marketplace design auction theory, the statistical analysis of auction data, and the intersection of econometrics and machine learning are all interesting topics to ponder over. In this article, the author says that “there is so much uncertainty about big data that most companies have become risk-averse — so afraid to make a mistake that they fail to do anything at all. This is the single greatest error executives can make (read more).”


Virtual Test Analysis System

ViTAL is a software tool created by CADFEM on behalf of AIRBUS for the fast generation and fully nonlinear analysis of fuselage skin panel within the FE solver ANSYS. This case study says, “simulation is used to reduce the number of necessary tests, perform parametric studies and get additional information on loaded structures which are inaccessible to measuring devices. ViTAL provides boundary conditions to simulate shear pressure tests and frame bending tests performed at AIRBUS (read more).


esocaet – Master’s in Simulation

Since several years, CADFEM has been committed to transfer know-how to the community. Sharing our experiences allows us to grow the industry because better-qualified and better-equipped simulation professionals enter our industry. CADFEM offers extensive education and training, stimulates the global exchange of knowledge among simulation experts, and promotes a strategic rapport between companies and research institutes. Learn about our Master’s Program in Simulation (read more).”


Hardware & IT Solutions

We recognize that Simulation is more than Software®. To ensure that our customers derive RoI faster and in an effective manner, CADFEM offers a comprehensive range of services, from installation and configuration to maintenance and hardware support for individual components, planning, implementation, and support of entire CAE data centers. Since performance of a simulation also depends on the hardware, we offer workstations and servers that function robust to scale up your simulation speeds. Learn more about what we can do to help you! (read more)


Image showing a 3D city model and contour plot depicting the impact of a detonation inside the city model. This image is being used while discussing an article in the Weekly Simulation Round-Up.
Revolutionary Applications – Cities of The Future

We constantly work on tailoring existing solutions to meet specific customer needs and applications. City Simulations are an area of particular interest to CADFEM. While we possess the competency to address the needs of the cities, disaster risk reduction is the reason for our foray into this revolutionary application. To build cities of our future, we are at the forefront of applying simulations and building digital city twins (read more).

Thank you! Hope you liked this edition of Weekly Simulation Round-Up.

Share this on:

Weekly Simulation Round-Up | Issue 1

Banner for Weekly Simulation Roundup

Welcome to the Weekly Round-Up! In this, we’re sharing posts that start from the importance of the Big Data, Healthcare to the breaking medical pills. We hope you’ll enjoy this post.


Maintaining Power and Signal Integrity

The article from ANSYS Advantage Magazine says that “the ever-changing hardware that supports big data and the Internet of Things must be fast, reliable and quickly developed. Simulation is important to ensure first-pass success by keeping pace with Big Data & Internet of Things, PCB/Chip Speed & Reliability are paramount (read more).”


CFD Modeling for Cardboard Packaging Ventilation

CFD simulation is used to model cardboard boxes to regulate temperature during pre-cooling, transport and storage. According to this article, “packaging ventilation must therefore be designed keeping in mind various parameters such as: type of packaging, type of holes, external and internal packaging structure, type of product, product shape and size, etc (read more).”


Patient-Specific Hip Implantation Methods

ANSYS software simulates the stress and strain on bones of individual patients to study a new hip implantation method. In an ANSYS Advantage magazine article, they say that “increasing numbers of patients are suffering from pain, stiffness or difficulty in moving due to osteoarthritis in their hips.”

The article goes on to add saying that “doctors typically recommend hip replacement surgery for patients with pain so severe that it limits everyday activities or reduces their range of motion. In hip replacement surgery, a damaged hip joint is surgically replaced with an artificial implant. The surgeon removes the head of the femur with a saw and then attaches a ball that is anchored by a shaft extending into the femur. A mating cup is attached to the pelvis (read more).”


Great Molasses Flood of 1919

Live Science brings an article from the archives. Apparently “a bubbling flood of molasses sent a towering wave of goo down the streets of Boston in 1919. It caught everything from horses to humans in its sticky grasp, killing 21 people, injuring 150 more and flattening buildings in its wake. Now, scientists have figured out why the deluge of viscous sweetener was so deadly (read more).”


Studying Breakage of Medical Pills

Simulation of material fragmentation is easier than ever now! Rocky DEM can simulate the division of a pharmaceutical pill (or any other particle) and then analyze of the behavior of the material. Such complex breaking phenomenon is possible with Discrete Element Modeling using Rocky DEM (read more).

That’s it for this Weekly Roundup! See you next week.

Share this on: