ANSYS Discovery Live: Simulations for ALL

This article introduces you to a new, revolutionary technology called ANSYS Discovery Live. This technology provides instantaneous simulation results through an interactive design exploration experience for fluids, structural, and thermal studies.

With the inception of 4th industrial revolution, also called Industry 4.0, every industry is changing rapidly with groundbreaking innovations. In turn, this has placed a severe strain on the product development cycle. Innovative products need to be brought faster to market to reduce opportunity cost. This context has only reinforced my belief to expand the Simulation-Driven Product Development approach like never before.

Engineering simulation, though utilized for industrial applications for several years, is still underused and used by experts. A decade ago, it was difficult to learn and master such a technology. Often executing a simulation task end-to-end took time to set up and run.  In 2007, ANSYS, Inc. launched ANSYS Workbench as, what I believe was, the first step to democratize simulation adoption. Since then, and along with rapid advancements and easy availability of computer hardware, simulation adoption has grown leaps and bounds.

Greater Power to Design Engineers?

However, until late last year, I felt that there is a stronger need to foster a greater collaboration between the design and simulation engineers. From my experience, I have seen simulation engineers complain about “geometry cleanup for simulation of each design” on one end and design engineers complaining about “huge time taken by an analyst for each design validation” on the other end. With such a to and fro between both teams, there is such a huge market need that needed to be filled. Though there are many engineering simulation software products in the market, no one could democratize the simulation to potentially elevate the role of designers in product development. Although the design engineers have a very important role to play in the product development cycle, they have largely been restricted to developing CAD models at best.

In Fall 2017, ANSYS, Inc. conducted a webinar on a new, revolutionary technology that was going to “change how the simulation was done”. My colleagues from CADFEM Germany called it Das ist der Hammer (translation: it’s awesome). Rarely does a product match its hype, but several of us were blown away while watching the webinar on ANSYS Discovery Live (ANSYS DL). In a whole lot of ways, ANSYS DL is disruptive and it made me rethink how I have been doing simulations.

What is ANSYS Discovery Live?

ANSYS Discovery Live is the newest technology from ANSYS, Inc. HQ at Canonsburg, PA. With this technology, every engineer can use to perform instantaneous multiple physics simulation of virtual prototypes to understand the behavior of the product design.

The development team has leveraged on the advancements in Graphical Processor Units (GPUs), developed new discretization techniques along with their knowledge of advanced parallel solver technology. ANSYS DL is built on Direct Modeler tool called SpaceClaim platform to import and modify the solid geometry with ease. Once you define the physics and boundary conditions, you’ll get results in no time. This is instantaneous, real-time simulation! The technology in ANSYS DL has automated the steps of meshing, building the finite element model, solving and extracting the results in few seconds to give you an insight into your design.

ANSYS Discovery Live
Instantaneous Simulation for Every Engineer
Why is ANSYS Discovery Live Unique?
  • Instantaneous results show up for any change in geometry. No need to setup the simulation again. [VIDEO: 50 Simulations in 15 Minutes]
  • It combines GPU-based solvers for multiple physics.
  • You can easily integrate ANSYS DL with flagship ANSYS, Inc. products for advanced studies.
How does ANSYS Discovery Live change things?

Design engineers tell me frequently that several ideas go untested and they are totally dependent on the analysts. I could hardly do anything, but empathize with them. On the other hand, executing any simulation task leaves analysts with limited time to explore different design concepts.

With ANSYS DL, design and simulation engineers can quickly discover the behavior of their product live and instantaneously. ANSYS DL has created a fundamental shift by moving from design verification to experimenting and gaining deeper understanding. This is a huge benefit because you can evaluate several design iterations early in the design cycle. The ease of setting up the problem in ANSYS DL enables design engineers to quickly check the ideas in a shorter time frame. This also allows them to reduce dependency on the simulation engineer. The latter will still continue to perform traditional simulation tasks, but ANSYS DL gives design engineers more power to contribute to product development.

ANSYS DL marks the next step by ANSYS, Inc. to further democratize simulation adoption across different industries.

How can CADFEM help you?
  • Greater Understanding of Hardware for Simulations. Partnership with major brands such as HP and NVIDIA allows us to help you select the appropriate hardware for your simulation tasks.
  • Strong technical expertise will help you solve your engineering problem.
Download ANSYS DL & Attend Webinar

ANSYS DL is available as a Technology Preview until February 7. With this preview, you can test the pre-release locally on your machine by downloading or through your favorite internet browser.

Download ANSYS DL today. Also you must attend the ANSYS DL Webinar as we kick start the 2018 CADFEM Technical Webinar Series. You can do this by accessing the below links.

  • DOWNLOAD ANSYS Discovery Live (until Feb 7). You will need to register using a form and then you’ll get instant access to this exciting technology!
  • REGISTER for WEBINAR: Simulations are Now Accessible to Every Engineer (Feb 1 at 2:30 PM IST)
Share this on:

3 Benefits of ANSYS SpaceClaim for 3D Printing

In this article, I will describe 3 benefits of ANSYS SpaceClaim Direct Modeler for 3D Printing and other applications. Specifically I will focus my attention on the Facet Tool in this article.

While searching for freely-available CAD models on, I chanced upon the challenges section because it piqued my interest. To my surprise, I found about 75% of the recent challenges to be related to topology optimization. For most of these challenges, lightweighting will yield a final design output that is optimum in weight. However such an output will be complex for traditional manufacturing processes. In the recent years, additive manufacturing or, often referred to as, 3D printing has appeared to be the manufacturing process of choice for several contemporary applications.

For topology optimization, ANSYS is the simulation tool of choice. In the latest Release 18, a significant thrust was provided to this topic. The technology is very powerful and highly-effective for lightweighting the designs. Typically, topology optimization results in the design in STL file format. In my experience, this design output is often fraught with poor facet quality and this requires cleanup by a competent tool.

Typical STL File Output of a Bracket after Topology Optimization towards 3D Printing
Typical STL File Output of a Bracket after Topology Optimization

The full suite of ANSYS Simulation Software offers not just solvers for multiple physics, but also several value added tools such as ANSYS SpaceClaim Direct Modeler (SCDM). This tool allows product companies to launch their offerings faster to market.

Now SCDM has several useful features that allow geometry manipulation and clean-up. Among many features, I found the Facet Tool to be extremely useful. After completion of topology optimization, the STL file output from ANSYS is imported into SCDM.  This Facet Tool helps in cleaning up the STL file output containing poor facet quality and helps me prepare the design for validation using ANSYS Mechanical.

For better understanding, I have included the typical workflow below.

Workflow for Topology Optimization for 3D Printing
Workflow for Topology Optimization

With this context in place, I will now introduce you to the 3 significant benefits of using ANSYS SpaceClaim Direct Modeler for 3D Printing applications.

HIPP Add-In for Reverse Engineering

HIPP is an SCDM add-in developed by This tool is quite useful for engineers performing reverse engineering – with the eventual goal of producing the desired part using 3D Printing. For this case, the approach typically starts with scanning of the part desired for reverse engineering. The scan results in an STL file format created directly in SCDM; this automatic scan to STL is powered by the HIPP add-in. The Facet Tool in SCDM is then used to repair and prepare a watertight geometry.

Here’s an example of the scanned geometry of top profile of a piston rod that was generated in SCDM using the HIPP add-in. The facets in this geometry did not capture the profile accurately. Furthermore the geometry has undesired holes along with unwanted parts.

Image of a scanned geometry of a part in SCDM (using HIPP Add-In) for 3D Printing
Scanned geometry of a part in SCDM (using HIPP Add-In)

Using the Facet Tool, the repaired geometry is now ready for topology optimization and design validation before producing it using 3D Printing.

Image of the modified geometry in SCDM using Facet Tool for 3D Printing
Modified geometry in SCDM using Facet Tool
Save Resources – Faster to Market

There are numerous software tools for STL preparation, however SCDM Facet Tool has many value-adding, additional capabilities. With a very little investment, the Facet Tool provides a strong hold in combining multiple solid parts with faceted geometries in a user-friendly manner; this feature has several advantageous implications for 3D printing. Furthermore the tool is very easy and requires little knowledge for geometry repair and preparation. To prepare the bracket geometry (illustrated at the beginning of the article), it took me 10-15 minutes. See the below image. Now I found it to be fairly quick when compared to 2-3 times more using other facet modeling tools.

Image of bracket geometry modified after using SCDM Facet Tool for 3D Printing
Bracket geometry modified after using SCDM Facet Tool
Preventing Failures in 3D Printing

The Facet Tool has features to detect thickness and overhang problems before the model is sent for 3D Printing. Now these overhangs present a challenge to 3D printing without using support material. Problems such as these can be prevented by few techniques like tear-dropping, tapering among others. The effects of overhang cannot be judged immediately until you are a 3D Printing professional.

Facet Tool has a feature which detects the overhangs by providing parameters specific to 3D Printing. In particular, the thickness feature detects all geometry that is thinner than the minimum thickness specified by the printer OEM. In addition, I could understand thickness and overhangs-related problems beforehand by providing the direction of printing as well.

Other Applications

This topic is also of CADFEM’s particular interest because we invest into Digital Cities – a strategic initiative of CADFEM International that aims to simulate cities of our future. This topic is quite special and important since it involves studying the effects of disaster scenarios such as earthquake, tsunamis, pollution, crowd behavior among others.

virtualcitySYSTEMS, a CADFEM International group company, develops 3D city models using scanned data of terrains. For these city models, we use the Facet Tool to repair the geometry before performing urban simulations.

In future posts, I will delve further into using CFD and particle simulations for better modeling of 3D Printing applications.

Share this on: